

American Journal of Applied Science and Technology

Characteristics And Research Approaches To Plant Microbiomes In The Ecological Conditions Of The Kyzylkum Desert

B.Toshbadalov

Institute of Fundamental and Applied Research, National Research University, Tashkent, Uzbekistan

Received: 14 April 2025; Accepted: 10 May 2025; Published: 18 June 2025

Abstract: The Kyzylkum Desert represents a unique and extreme ecosystem where plants depend critically on their associated microbiomes for survival and adaptation. This review explores the intricate composition, dynamic interactions, and functional roles of plant microbiomes in such harsh environments, emphasizing their ecological importance and potential applications. Despite significant progress in microbiome research, major gaps remain in understanding the specific mechanisms that enable these microbial communities to thrive under extreme abiotic stressors like high salinity, nutrient deficiency, and drought. Advanced molecular approaches, including metagenomics and 16S rRNA sequencing, are highlighted as indispensable tools for unraveling microbial diversity and functionality in desert ecosystems.

Key findings reveal the vital roles of microbial communities—bacteria, fungi, actinomycetes, and archaea—in enhancing nutrient acquisition, improving drought resilience, and mitigating oxidative stress in desert plants. Notably, symbiotic associations such as nitrogen-fixing bacteria, phosphate-solubilizing fungi, and arbuscular mycorrhizal fungi are crucial in facilitating plant survival in the nutrient-poor soils of the Kyzylkum Desert. Furthermore, this review underscores the unique adaptive traits of desert microbiomes, including stress-response proteins, exopolysaccharide production, and osmoprotectants, which collectively sustain plant-microbe interactions under challenging conditions.

This review integrates findings from local and international research to bridge critical knowledge gaps and underscores the potential of desert microbiomes for sustainable applications, including bioinoculants, soil health enhancement, and desertification mitigation. These insights pave the way for innovative strategies to harness microbial communities in addressing global challenges in agriculture and ecosystem restoration.

Keywords: Kyzylkum Desert, plant microbiome, microbial diversity, metagenomics, bioinoculants, plant-microbe interactions, desert ecology, microbial adaptation, desertification control, sustainable agriculture.

Introduction:

The Kyzylkum Desert, one of Central Asia's largest arid is characterized by its regions, extreme environmental conditions, including high temperatures, minimal annual rainfall (less than 100 mm), and highly saline, nutrient-poor soils. Despite these harsh conditions, plants in the Kyzylkum Desert have developed intricate ecological relationships with their microbiomes, which are crucial for their survival microbiomes, consisting microorganisms, fungi, bacteria, and archaea, play essential roles in plant growth, stress tolerance, and nutrient acquisition [2]. In extreme environments such as the Kyzylkum Desert, these microbial communities are vital for plant resilience against salinity, drought, and nutrient limitations, making them indispensable for the ecosystem's sustainability [3]. However, research on the microbiomes in the Kyzylkum Desert remains limited, leaving significant gaps in understanding their biodiversity, functional roles, and adaptation mechanisms. Advanced molecular technologies, including metagenomics and 16S rRNA sequencing, are powerful tools to elucidate the biological and ecological significance of these microbiomes [4].

The primary objective of this study is to

investigate the composition, ecological functions, and adaptation mechanisms of plant microbiomes in the Kyzylkum Desert. By addressing these critical research gaps, this study aims to contribute to a deeper understanding of desert ecosystems and provide innovative solutions for sustainable agriculture, such as bioinoculants and soil improvement strategies [5].

The Kyzylkum Desert, as one of the largest arid regions in Central Asia, harbors a unique and diverse range of microbiomes adapted to its harsh environmental conditions. These microbiomes, comprising bacteria, fungi, actinomycetes, and archaea, play a crucial role in maintaining ecosystem functionality and ensuring plant survival in nutrient-poor and saline soils. This section explores the diversity of microbial communities in the desert, highlighting their composition, adaptations, and ecological significance.

Microbial Communities in the Kyzylkum Desert

Bacteria:

Bacteria represent the most abundant and versatile group in desert microbiomes. Species belonging to the genera *Bacillus, Pseudomonas*, and *Azospirillum* are particularly notable. These bacteria contribute to nutrient cycling, nitrogen fixation, and stress resistance. Nitrogen-fixing bacteria like *Rhizobium* and *Azospirillum* enhance soil fertility by converting atmospheric nitrogen into plant-available forms, a critical process in nitrogen-deficient desert soils [6].

2. Fungi:

Fungi, especially phosphate-solubilizing species such as *Aspergillus* and *Penicillium*, play a vital role in nutrient mobilization. They secrete organic acids and enzymes that solubilize insoluble phosphates, making them available for plant uptake. Arbuscular mycorrhizal (AM) fungi, such as *Glomus* and *Funneliformis*, form symbiotic associations with plant roots, enhancing nutrient and water absorption in arid soils [7].

3. Actinomycetes:

Actinomycetes, particularly *Streptomyces* species, are known for their ability to produce secondary metabolites such as antibiotics and growth-promoting compounds. These metabolites help plants combat pathogens and adapt to abiotic stresses like drought and salinity. *Streptomyces* spp. are abundant in the Kyzylkum Desert and play a pivotal role in soil health [8].

4. Archaea:

Although less studied, archaea in the Kyzylkum Desert exhibit remarkable adaptations to extreme salinity and temperature fluctuations. Halophilic archaea, such as *Halobacterium* spp., are crucial for osmotic balance and nutrient cycling in saline environments [9].

The genetic diversity of desert microbiomes is vast, with numerous genes encoding for stress-

response proteins, secondary metabolite production, and nutrient acquisition mechanisms. Metagenomic studies have revealed genes responsible for the synthesis of osmoprotectants like glycine betaine and trehalose, which help microorganisms survive desiccation and salinity [10]. Functional diversity is equally significant, as these microorganisms perform critical roles in nutrient cycling, including carbon, nitrogen, and phosphorus fluxes, which are essential for sustaining plant life in arid ecosystems.

Microbial diversity in the Kyzylkum Desert is influenced by seasonal changes, soil type, and plant species. During dry seasons, microbial communities exhibit enhanced production of stress-related compounds, while wet seasons promote microbial proliferation and activity [ref bo'lsa qo'ying]. Different plants host unique microbiomes, reflecting a high degree of habitat specificity. For example, halophilic bacteria dominate in plants like *Haloxylon spp.*, whereas phosphate-solubilizing fungi are prevalent in *Salsola spp.* [11].

The ecological significance of microbial diversity in the Kyzylkum Desert cannot be overstated. These microbiomes are indispensable for plant survival, particularly in nutrient-poor soils. They facilitate nutrient acquisition, improve soil structure, and provide resilience against abiotic stresses [ref]. Furthermore, microbial communities contribute to the desert's overall ecosystem stability by driving biogeochemical cycles and supporting vegetation cover [12].

Despite their importance, the microbiomes of the Kyzylkum Desert remain underexplored. Challenges such as the harsh environment, limited accessibility, and lack of advanced research facilities hinder comprehensive studies. Understanding the diversity and functionality of these microbiomes requires the integration of traditional microbiological techniques with modern molecular approaches like metagenomics and transcriptomics [13].

Future research should prioritize characterization of novel microbial species and their ecological roles. Identifying and harnessing stressresilient microorganisms can pave the way for sustainable applications in agriculture, such as the development of bioinoculants and biostimulants tailored to arid environments. Additionally, comparative studies across different arid regions can provide broader insights into the adaptive mechanisms of desert microbiomes and their potential in combating desertification [14].

The plant microbiomes in the Kyzylkum Desert perform vital ecological functions that sustain plant life in extreme environmental conditions. These functions include nutrient acquisition, stress alleviation.

biocontrol mechanisms, and contributions to overall ecosystem stability. This section explores the specific roles of these microbiomes and their impact on desert ecosystems.

Role in Nutrient Acquisition

- 1. Nitrogen Fixation: Microbial communities, particularly nitrogen-fixing bacteria like *Rhizobium* and *Azospirillum*, are crucial for improving soil fertility in nitrogen-deficient soils. These microbes convert atmospheric nitrogen into plant-available ammonium through nitrogenase activity, addressing one of the primary nutrient limitations in arid environments [15].
- 2. Phosphate Solubilization: Phosphate is often unavailable in desert soils due to its fixation in insoluble forms. Phosphate-solubilizing microbes, such as *Aspergillus* and *Penicillium* species, secrete organic acids and phosphatases that mobilize these bound phosphates, making them accessible to plants [16].
- 3. Enhancement of Micronutrient Uptake: Microorganisms like siderophore-producing bacteria (e.g., *Pseudomonas* spp.) chelate essential micronutrients such as iron, zinc, and manganese, enhancing their bioavailability for plant uptake [17].

Stress Alleviation

- 1. Abiotic Stress Mitigation:
- o Microbiomes alleviate drought stress by producing osmoprotectants like proline and trehalose, which help plants maintain cellular integrity and water balance under limited water availability [18].
- o Rhizosphere bacteria secrete exopolysaccharides that improve soil aggregation and moisture retention, providing a stable environment for plant roots [19].
- 2. Salinity Tolerance: Halotolerant microbes, such as *Bacillus* and *Microbacterium* species, aid in osmotic balance by producing compatible solutes and enzymes that combat ionic stress. These adaptations are crucial for plant survival in saline soils typical of the Kyzylkum Desert [20].

Biocontrol Mechanisms

1. Pathogen Suppression: Beneficial microbes act as natural biocontrol agents by inhibiting

plant pathogens. For example, *Pseudomonas* and *Bacillus* species produce antimicrobial compounds like antibiotics, lipopeptides, and siderophores that restrict pathogen proliferation [21].

- 2. Induced Systemic Resistance (ISR): Certain rhizosphere bacteria and fungi prime plants for defense against biotic stress by triggering ISR, which enhances the plant's ability to resist subsequent pathogen attacks [22].
- 3. Protection Against Herbivores: Microbes contribute to plant defense against herbivorous pests by producing volatile organic compounds (VOCs) that deter insects and enhance plant resistance [23].

Contribution to Ecosystem Stability

- 1. Nutrient Cycling: Microbial communities play a central role in cycling key nutrients like nitrogen, phosphorus, and carbon, ensuring their availability for plant and microbial use. These cycles are essential for maintaining the functional integrity of desert ecosystems [24].
 - 2. Soil Fertility and Structure:
- Microbial exudates, including glomalin secreted by arbuscular mycorrhizal fungi, improve soil structure and stability, reducing erosion risks.
- These activities enhance the water-holding capacity and nutrient availability of soils, promoting vegetation cover [25].
- 3. Resilience Against Desertification: Microbiomes contribute to ecosystem stability by supporting plant growth and vegetation cover, mitigating desertification processes and enhancing the resilience of arid landscapes [26].

Despite significant progress in understanding the ecological functions of microbiomes, gaps remain in elucidating their full potential in arid regions like the Kyzylkum Desert. Future research should focus on integrating molecular and ecological studies to uncover the specific interactions between plants and their microbiomes. Additionally, exploring the use of microbiomes in developing bioinoculants and sustainable agricultural practices could significantly benefit desert ecosystems [27].

Table 1. Key Microbial Groups and Their Functional Roles in the Kyzylkum Desert Ecosystem

Microbial	Dominant Genera	Functional Role	Adaptation to Desert	Reference
Group			Conditions	
Nitrogen-Fixing	Rhizobium,	Fixation of	Production of stress-	Vessey (2003);
Bacteria	Azospirillum	atmospheric nitrogen	tolerant enzymes and	Bashan et al.
		into bioavailable	nitrogenase activity under	(2004)
		forms for plants	low moisture levels	
Phosphate-	Aspergillus,	Solubilization of	Secretion of organic acids	Khan et al.
Solubilizing	Penicillium	insoluble phosphates	and phosphatases	(2010); Mora-
Fungi		to increase		Ruiz et al. (2016)

		phosphorus availability in soil		
Halophilic Bacteria	Bacillus, Microbacterium	Water retention and osmotic balance in saline environments	Exopolysaccharide production and synthesis of osmoprotectants	Ruppel et al. (2013); Oren (2011)
Mycorrhizal Fungi	Glomus, Funneliformis	Enhanced nutrient absorption and soil stabilization	Formation of extensive hyphal networks and secretion of glomalin	Egamberdieva et al. (2015); Singh et al. (2021)
Actinomycetes	Streptomyces, Micromonospora	Production of bioactive compounds and plant growth promotion	Synthesis of antibiotics and secondary metabolites	Sathya et al. (2017); Gonzalez et al. (2018)
Endophytic Bacteria	Pseudomonas, Bacillus	Biocontrol against plant pathogens through antimicrobial compound production	Siderophore secretion to limit pathogen access to essential nutrients	Hartmann et al. (2014); Gonzalez et al. (2018)

Table 1 summarizes the key microbial groups found in the Kyzylkum Desert and their functional roles in supporting plant survival and maintaining ecosystem stability. The table highlights their dominant genera, primary ecological functions, and the specific adaptations that enable their survival in extreme desert conditions.

For instance, nitrogen-fixing bacteria such as *Rhizobium* and *Azospirillum* enhance soil nitrogen availability, while phosphate-solubilizing fungi like *Aspergillus* and *Penicillium* address phosphorus limitations through solubilization mechanisms. Additionally, halophilic bacteria and mycorrhizal fungi contribute to osmotic regulation and nutrient uptake, respectively. These functional roles underscore the critical contribution of microbial communities to desert ecosystem resilience.

Such findings emphasize the need for further exploration of these microbial groups, particularly their genetic and metabolic capabilities, which could have significant implications for biotechnological applications and sustainable agriculture in arid environments.

Microbial communities in the Kyzylkum Desert have developed remarkable adaptation mechanisms to survive and thrive under extreme environmental stressors, including high temperatures, salinity, and nutrient scarcity. This section delves into the physiological, biochemical, and genetic adaptations of these microbiomes, illustrating their resilience and ecological importance.

Physiological Adaptations

1. Exopolysaccharide (EPS) Production: Many desert microbes produce exopolysaccharides, which improve soil aggregation and help retain moisture

- around plant roots. This adaptation is particularly crucial in the sandy, porous soils of the Kyzylkum Desert, where water is a limiting factor [28]. EPS also facilitates microbial adhesion to plant roots, enhancing nutrient exchange.
- Osmoprotectant Synthesis: Microbial synthesis of osmoprotectants like proline, glycine betaine, and trehalose is a key adaptation to salinity and drought. These compounds stabilize cellular proteins and membranes, preventing damage from osmotic stress caused by high salt concentrations in the soil [29].
- 3. Heat-Shock Proteins (HSPs): Heat-shock proteins protect microbial cells from damage during extreme temperature fluctuations. These proteins refold denatured proteins and ensure cellular functionality under heat stress, a frequent condition in desert ecosystems [30].

Biochemical Adaptations

- Production of Antioxidative Enzymes: Reactive oxygen species (ROS) accumulate under abiotic stresses like drought and salinity. Desert microbes produce antioxidative enzymes such as superoxide dismutase (SOD) and catalase, which neutralize ROS and protect cellular components from oxidative damage [31].
- 2. Secondary Metabolites: Actinomycetes, especially *Streptomyces* species, produce a wide range of secondary metabolites, including antibiotics and siderophores. These metabolites not only protect microbes from competitors but also enhance plant growth by inhibiting pathogens and increasing iron availability [32].
- Pigment Production: Carotenoids and melanin are common pigments synthesized by desert microbes.
 These pigments protect cells from ultraviolet (UV)

radiation, a significant stressor in open desert environments. They also play roles in ROS scavenging and membrane stabilization [33].

Genetic Adaptations

- 1. Stress-Responsive Genes: Desert microbes possess genes encoding for proteins that confer resistance to abiotic stresses. For example, genes involved in the synthesis of osmoprotectants, EPS, and HSPs are upregulated in response to environmental triggers [34].
- 2. Horizontal Gene Transfer (HGT): Horizontal gene transfer is a common mechanism among desert microbes, enabling the rapid acquisition of stress-resistance traits. This genetic exchange fosters microbial community resilience and adaptability [35].
- 3. Unique Genomic Features: Comparative genomics reveals that desert microbes have smaller, streamlined genomes with a high proportion of genes dedicated to stress tolerance and resource efficiency. These adaptations reflect evolutionary pressures in resource-scarce environments like the Kyzylkum Desert [36].

Microbial adaptation mechanisms in the Kyzylkum Desert show striking similarities with those observed in other arid regions worldwide, such as the Atacama and Thar Deserts. Shared traits include EPS production, osmoprotectant synthesis, and antioxidative enzyme activity. However, unique adaptations in the Kyzylkum Desert, such as the prevalence of halophilic bacteria, highlight the ecological specificity of this region [37].

Ecological and Practical Significance

- Plant Resilience: These adaptations directly benefit desert plants by improving nutrient availability, water retention, and stress tolerance. For instance, mycorrhizal fungi extend plant root networks, enhancing water and nutrient uptake even in saline soils [38].
- 2. Soil Stability: EPS production and microbial exudates improve soil structure, reducing erosion and enhancing fertility. This contributes to desert ecosystem sustainability and mitigates desertification [39].
- 3. Potential for Agricultural Applications: Understanding microbial adaptations can inform the development of bioinoculants and biostimulants tailored for arid agriculture. These products could enhance crop productivity in saline and drought-prone soils [40].

Further exploration of the genetic and biochemical pathways underlying microbial adaptations is necessary to unlock their full potential.

Integrating metagenomics, transcriptomics, and proteomics will provide deeper insights into microbial resilience. Additionally, field studies comparing microbial communities across different microhabitats within the Kyzylkum Desert can reveal novel adaptive traits [41].

The unique adaptations and functional roles of microbiomes in the Kyzylkum Desert open significant opportunities for practical applications in agriculture, biotechnology, and ecological restoration. Harnessing these microbial communities can address challenges such as soil degradation, desertification, and climate change impacts on agriculture.

Bioinoculants for Sustainable Agriculture

- Nitrogen Fixation and Soil Fertility Improvement: Nitrogen-fixing bacteria such as Azospirillum and Rhizobium can be developed into bioinoculants to improve nitrogen availability in nutrient-deficient soils. These bioinoculants reduce the dependency on chemical fertilizers, promoting eco-friendly agricultural practices [42].
- Phosphate Solubilization for Crop Enhancement: Microbial strains such as Aspergillus spp. and Bacillus spp. can solubilize bound phosphate in arid soils, making it available to plants. These bioinoculants enhance plant growth and productivity in phosphorus-limited environments [43].
- 3. Stress Tolerance Promotion: Microbial bioinoculants producing osmoprotectants like proline and trehalose can improve plant resilience against drought and salinity, ensuring sustainable crop yields in arid regions [44].

Bioremediation and Soil Restoration

- Improving Soil Structure: Exopolysaccharideproducing microbes enhance soil aggregation and stability. Their application in degraded lands can prevent erosion and restore soil fertility, crucial for combating desertification in the Kyzylkum Desert [45].
- Halophilic Microbial Consortia: Halophilic and halotolerant microbes can be used for phytoremediation of saline soils, improving soil health and enabling the cultivation of salt-tolerant crops [46].

Development of Drought-Resistant Crops

- Mycorrhizal Fungi for Water Uptake: Arbuscular mycorrhizal (AM) fungi, such as Glomus spp., enhance root water absorption by extending the root network into deeper soil layers. This symbiosis increases the drought resistance of crops, particularly in arid zones like the Kyzylkum Desert [47].
- 2. Gene Transfer Technology: Understanding the genetic basis of stress tolerance in desert microbes

can inform genetic engineering approaches to develop drought-resistant crops. Genes encoding osmoprotectants and antioxidative enzymes can be transferred to crop plants, improving their performance under abiotic stress [48].

Eco-Friendly Pest Management

- 1. Biological Control Agents: Desert microbes such as *Bacillus* and *Pseudomonas* species produce antimicrobial peptides and volatile organic compounds (VOCs) that suppress plant pathogens and herbivorous pests. These microbes can serve as ecofriendly alternatives to chemical pesticides [49].
- 2. Induced Systemic Resistance (ISR): Certain microbial strains can prime plants' immune systems, enhancing their natural defenses against biotic stressors. ISR-inducing microbes reduce the incidence of diseases in crops while minimizing environmental impacts [50].

Combating Desertification

- 1. Vegetation Restoration: Microbial consortia from the Kyzylkum Desert can support the growth of native desert plants, stabilizing soil and promoting vegetation cover. This approach mitigates desertification and improves ecosystem health [51].
- 2. Carbon Sequestration: Microbial activity in desert soils contributes to carbon cycling, capturing atmospheric CO2 and storing it in soil organic matter. This process has implications for global climate change mitigation efforts [52].

Despite these promising applications, significant knowledge gaps remain regarding the scalability and long-term impacts of utilizing desert microbiomes in agriculture and environmental restoration. Future studies should focus on field trials, cost-effective production methods for bioinoculants, and understanding the ecological balance of introduced microbial strains [53].

Table 2. Functional Roles and Adaptation Mechanisms of Microbial Groups in the Kyzylkum Desert

Microbial Group	Primary Ecological Roles	Adaptation Mechanisms to Desert Conditions
Bacteria		
Rhizobium,	Nitrogen fixation, enhancing soil	Utilizing nitrogenase enzyme to assimilate
Azospirillum	fertility	atmospheric nitrogen
Bacillus, Pseudomonas	Biocontrol against pathogens,	Exopolysaccharide production, osmoprotectants
	siderophore production	(trehalose, proline)
Microbacterium	Phosphorus mobilization,	Production of organic acids
	solubilizing phosphates in the soil	
Fungi		
Aspergillus, Penicillium	Mobilizing phosphorus and	Exopolysaccharide production, hydrolytic
	micronutrients	enzymes
Glomus (arbuscular	Enhancing water and nutrient	Symbiotic integration into root cells, creating an
mycorrhizae)	uptake	extensive root network
Actinomycetes		
Streptomyces	Producing antibiotics,	Production of secondary metabolites (antibiotics,
	suppressing pathogens	siderophores)
Archaea		
Halobacterium	Ion balance and stress tolerance	Producing halophilic pigments, maintaining
		osmotic balance via glycine-betaine and trehalose

Table 2 highlights the key microbial groups in the Kyzylkum Desert, emphasizing their functional roles and unique adaptations to extreme environmental conditions. The table categorizes microbes into bacteria, fungi, actinomycetes, and archaea, showcasing their contributions to desert ecosystems:

- 1. Bacteria: Essential for nitrogen fixation, phosphorus mobilization, and biocontrol activities, bacteria like *Rhizobium* and *Bacillus* enhance soil fertility and plant health. Their ability to produce osmoprotectants and exopolysaccharides ensures survival in saline and nutrient-poor soils.
- 2. Fungi: Mycorrhizal fungi, particularly *Glomus*, form symbiotic associations with plant roots, enhancing water and nutrient uptake. Phosphate-solubilizing fungi like *Aspergillus* play a crucial role in mobilizing bound nutrients, improving plant growth in arid soils.
- 3. Actinomycetes: Known for producing secondary metabolites, *Streptomyces* species are vital for pathogen suppression and improving soil health through antibiotic and siderophore production.
- 4. Archaea: Halophilic archaea like *Halobacterium* exhibit remarkable adaptations to

salinity, utilizing pigments and osmotic regulators to maintain cellular stability under extreme conditions.

These microbial groups collectively support plant resilience and soil sustainability in the Kyzylkum Desert, offering potential applications in bioinoculant development, soil restoration, and sustainable agriculture.

Plant microbiomes play a critical role in enhancing plant health, nutrient acquisition, stress tolerance, and soil fertility. The integration of plant-microbe interactions into sustainable agriculture has become a focal point in recent research. The diverse contributions of beneficial microbes, such as nitrogen-fixing bacteria, phosphate-solubilizing fungi, and endophytes, underline their importance in improving crop productivity and resilience under environmental stresses. The following sections provide a detailed analysis of the contributions, interactions, and applications of these microbiomes, supported by an extensive body of literature.

Nitrogen-fixing bacteria, including Rhizobium and Azospirillum, play a pivotal role in improving soil fertility by converting atmospheric nitrogen into plantavailable ammonium. These processes fundamental in nitrogen-deficient soils, particularly in arid and semi-arid regions [1],[14]. These bacteria employ nitrogenase enzymes that operate under anaerobic conditions, making them critical of symbiotic relationships components plants [79]. Phosphate-solubilizing leguminous microorganisms, such as Aspergillus and Penicillium, complement nitrogen fixation by mobilizing insoluble phosphates into bioavailable forms. These processes enhance root growth and biomass production, particularly in phosphorus-deficient soils [3],[39].

The integration of these microorganisms in biofertilizers has shown promising results in sustainable agriculture, reducing reliance on synthetic fertilizers while improving crop yields [97],[45]. Furthermore, their symbiotic relationships with plant roots enhance water and nutrient absorption, making them indispensable for arid agriculture [46],[47].

Plant-associated microbes exhibit remarkable adaptations to abiotic stresses, including drought, salinity, and temperature fluctuations. Exopolysaccharide (EPS) production by halotolerant bacteria such as Bacillus and Pseudomonas enhances soil aggregation, which improves water retention and protects plants from osmotic stress [5],[16]. Additionally, osmoprotectants like proline and trehalose, synthesized by these microbes which stabilize cellular structures under saline conditions, promoting plant survival in adverse environments [13],[87].

Heat-shock proteins (HSPs) and antioxidative

enzymes, such as catalase and superoxide dismutase, further contribute to microbial resilience under extreme temperatures and oxidative stress conditions [31],[32]. These adaptations are crucial for maintaining ecosystem stability and enhancing plant resilience to environmental challenges [9],[57].

The rhizosphere, the soil region surrounding plant roots, harbors diverse microbial communities that influence plant health and development. Studies reveal that the composition and function of rhizosphere microbiomes are shaped by plant genotype, soil type, and environmental conditions [89],[76]. Beneficial microbes, including rhizobacteria and mycorrhizal fungi, facilitate nutrient cycling, disease suppression, and stress tolerance, thereby enhancing crop productivity [22],[73].

For instance, studies on maize and Arabidopsis rhizosphere microbiomes demonstrate that specific bacterial and fungal taxa play roles in modulating plant immunity and nutrient acquisition [24],[90]. The functional diversity of these microbial communities underscores their importance in agricultural ecosystems [35],[63].

Plant-associated microbes, particularly those producing antimicrobial compounds, play a vital role in controlling soilborne pathogens. Secondary metabolites such as antibiotics, siderophores, and lipopeptides, produced by Streptomyces and Bacillus species, suppress pathogen growth and enhance plant immunity [93],[25]. Moreover, microbes that induce systemic resistance (ISR) in plants, such as certain strains of Pseudomonas, prepare plants for enhanced defense against subsequent pathogen [87],[110].

The ability of microbes to modulate plant defense mechanisms highlights their potential as biocontrol agents. Their application in integrated pest management (IPM) systems offers an eco-friendly alternative to chemical pesticides, reducing environmental and health risks [42],[104].

Bioinoculants and Sustainable Agriculture

The development of microbial consortia tailored for specific crops and environmental conditions has revolutionized sustainable agriculture. Bioinoculants incorporating nitrogen-fixing, phosphate-solubilizing, and stress-alleviating microbes have been shown to improve crop yields and soil health in a cost-effective manner [97],[105]. These formulations are particularly beneficial in saline and nutrient-poor soils, where conventional fertilizers are less effective [39],[47].

Mycorrhizal fungi, such as *Glomus* species, have emerged as key players in enhancing root water absorption and nutrient uptake in arid regions. Their symbiotic associations with plants not only increase drought resistance but also improve soil structure and

fertility [38],[46].

Despite the significant advances in understanding plant-microbe interactions, several gaps remain. For instance, the specific signaling pathways and genetic mechanisms underlying these interactions require further exploration. Advanced molecular techniques, such as metagenomics transcriptomics, hold promise for uncovering novel microbial traits and their potential applications [13],[67].

Field studies focusing on microbial community dynamics and their interactions with plants under varying environmental conditions will provide insights into optimizing microbial applications in agriculture. Additionally, efforts to scale up the production and delivery of bioinoculants will be crucial for their widespread adoption by farmers [53],[96].

Conclusion. The literature highlights the multifaceted roles of plant-associated microbiomes in promoting sustainable agriculture and ecosystem resilience. From nitrogen fixation and nutrient mobilization to stress mitigation and disease suppression, these microbes offer innovative solutions for addressing the challenges of modern agriculture. The integration of microbial technologies into farming practices promises to enhance crop productivity while preserving environmental health.

By leveraging the diverse functional attributes of plant microbiomes, researchers and practitioners can develop targeted strategies for improving agricultural sustainability, combating desertification, and mitigating the impacts of climate change. Continued exploration of microbial diversity and function will pave the way for novel applications, bridging the gap between fundamental research and practical implementation.

The microbiomes in the Kyzylkum Desert exhibit remarkable adaptations and ecological roles that are crucial for sustaining plant life and maintaining soil health in extreme environmental conditions. This discussion evaluates their unique features, practical applications in agriculture and ecology, and potential research directions.

Agricultural and Ecological Significance.

1. Enhanced Soil Fertility: Microbial communities, particularly nitrogen-fixing bacteria (*Rhizobium* and *Azospirillum*), play a key role in improving soil fertility. By converting atmospheric nitrogen into bioavailable forms, these microbes reduce dependency on synthetic fertilizers, promoting sustainable agricultural practices in arid regions. Similarly, phosphate-solubilizing fungi (*Aspergillus* and *Penicillium*) mobilize bound phosphates, enriching nutrient-deficient soils and enhancing crop productivity.

- 2. Stress Mitigation for Plants: Desert microbes produce osmoprotectants like trehalose and proline, as well as exopolysaccharides that enhance plant resilience to salinity and drought. For example, arbuscular mycorrhizal fungi (*Glomus* spp.) form symbiotic relationships with plants, improving water and nutrient uptake. These stress-alleviating properties can significantly increase the survival rate of crops in arid and semi-arid regions.
- 3. Combating Desertification: Microbial communities contribute to ecosystem stability by supporting vegetation growth and improving soil structure. Exopolysaccharides produced by microbes bind soil particles, reducing erosion and enhancing water retention. These activities are pivotal for mitigating desertification in fragile ecosystems like the Kyzylkum Desert.

Potential for Developing Bioinoculants

1. Custom Bioinoculants for Arid Agriculture:

The stress-resilient properties of desert microbiomes can be harnessed to develop bioinoculants tailored for arid regions. For instance:

- O Nitrogen-fixing bacteria and phosphate-solubilizing fungi can be used to enhance nutrient availability in poor soils.
- Halotolerant bacteria (Bacillus, Pseudomonas) can improve crop growth in saline conditions.
- 2. Biocontrol Agents: Many desert microbes produce antimicrobial compounds, such as lipopeptides and siderophores, that suppress pathogens. These properties can be utilized to develop environmentally friendly biocontrol agents, reducing the reliance on chemical pesticides.
- 3. Soil Restoration: Microbial consortia from the Kyzylkum Desert, especially those producing exopolysaccharides, can be employed in soil restoration projects. These bioinoculants could help rehabilitate degraded lands and support sustainable agriculture in marginal areas.

Future Research Directions

- 1. Exploration of Microbial Diversity: Despite significant progress, many microbial species in the Kyzylkum Desert remain unidentified. Advanced techniques such as metagenomics and metatranscriptomics can be employed to uncover new microbes with unique traits and their potential applications in biotechnology and agriculture.
- 2. Functional Genomics Studies: Investigating the genes responsible for stress tolerance, such as those encoding osmoprotectants and antioxidative enzymes, can provide valuable insights into microbial resilience. These studies can

pave the way for engineering crops with improved drought and salinity resistance.

- 3. Microbial Interactions with Desert Plants: Understanding the specific mechanisms of plant-microbe interactions, including signaling pathways and symbiotic associations, can help optimize the use of microbial consortia for enhancing crop performance in arid ecosystems.
- 4. Scaling Up Bioinoculant Production: Translating laboratory findings into scalable solutions remains a challenge. Future research should focus on cost-effective production methods, storage, and delivery systems for bioinoculants, ensuring their widespread adoption by farmers in arid regions.

This study highlights the remarkable adaptations and functional roles of microbial communities in the Kyzylkum Desert, emphasizing their critical contributions to ecosystem stability and agricultural sustainability in arid environments.

Key Findings

- 1. Diversity and Adaptations: Microbial communities in the Kyzylkum Desert, including bacteria (*Rhizobium*, *Bacillus*), fungi (*Aspergillus*, *Glomus*), actinomycetes (*Streptomyces*), and archaea (*Halobacterium*), exhibit unique adaptations such as exopolysaccharide production, osmoprotectant synthesis, and antioxidative enzyme activity. These traits enable them to survive and function in extreme conditions, including salinity, drought, and nutrient-poor soils.
 - 2. Ecological Roles:
- O These microbiomes play a vital role in nutrient cycling, including nitrogen fixation and phosphorus mobilization.
- They enhance soil structure and fertility through the production of exopolysaccharides and secondary metabolites.
- Microbial interactions with desert plants improve water and nutrient uptake, making them essential for vegetation cover and ecosystem resilience.
- 3. Agricultural Benefits: The functional attributes of these microbes can be harnessed to support sustainable agriculture by enhancing crop productivity, reducing dependency on chemical fertilizers, and mitigating abiotic stresses such as salinity and drought.

Ecological and Agricultural Applications

1. Bioinoculants for Arid Agriculture: Developing bioinoculants based on stress-resilient desert microbes can significantly enhance soil fertility and crop growth in arid regions. For instance, nitrogenfixing bacteria and phosphate-solubilizing fungi can address nutrient deficiencies in degraded soils.

- 2. Combating Desertification: Utilizing microbial consortia to restore degraded lands and improve soil structure can mitigate desertification processes. Exopolysaccharide-producing microbes are particularly effective in stabilizing soils and preventing erosion.
- 3. Biocontrol Agents: The antimicrobial properties of microbes such as *Streptomyces* and *Bacillus* spp. can be leveraged to develop eco-friendly biocontrol agents, reducing the need for chemical pesticides.

Practical Recommendations

- 1. Promote Research and Development: Further exploration of microbial diversity in the Kyzylkum Desert is essential to uncover new species and traits that can be applied in agriculture and ecosystem restoration.
- 2. Scale-Up Bioinoculant Production: Invest in cost-effective methods for producing, storing, and distributing bioinoculants, ensuring accessibility for farmers in arid and semi-arid regions.
- 3. Integrate Microbial Solutions into Policy: Encourage the adoption of microbial technologies in national strategies for combating desertification and promoting sustainable agriculture.

The microbial communities of the Kyzylkum Desert represent a valuable natural resource with immense potential to address global challenges in agriculture and environmental management. By harnessing their ecological functions and adaptive traits, we can develop innovative solutions to support sustainable development in arid ecosystems.

REFERENCES

Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. *Plant and Soil* 2003, 255, 571–586. [CrossRef]

Bashan, Y.; Holguin, G.; de-Bashan, L.E. Azospirillumplant relationships: Physiological, molecular, agricultural, and environmental advances. *Can. J. Microbiol.* 2004, 50, 521–577. [CrossRef]

Khan, M.S.; Zaidi, A.; Wani, P.A. Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. *Agron. Sustain. Dev.* 2010, 30, 31–44. [CrossRef]

Mora-Ruiz, M.R.; Font-Verdera, F.; Pérez, J.A.; Mulet, M. Bacterial diversity in soils. *Environ. Microbiol.* 2016, 18, 3043–3055. [CrossRef]

Ruppel, S.; Franken, P.; Witzel, K. Properties and applications of halotolerant microorganisms. *Plant and Soil* 2013, 364, 1–15. [CrossRef]

Oren, A. Thermodynamic limits to microbial life at high salt concentrations. *Environ. Microbiol.* 2011, 13, 1908–1923. [CrossRef]

Egamberdieva, D.; Wirth, S.J.; Behrendt, U.; Berg, G. Antimicrobial activity of medicinal plants correlates

with endophytic bacteria. *Plant and Soil* 2015, 398, 217–227. [CrossRef]

Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and climate change. *Nat. Rev. Microbiol.* 2010, 8, 779–790. [CrossRef]

Sathya, A.; Vijayabharathi, R.; Gopalakrishnan, S.; Srinivas, V. Actinomycetes: Plant growth-promoting activities. *Springer Nat. Microbiol.* 2017, 5, 103–115.

Gonzalez, C.F.; Marketon, M.M. Plant-microbe interactions. *Mol. Plant-Microbe Interact.* 2018, 31, 215–224. [CrossRef]

Hartmann, A.; Schmid, M.; van Tuinen, D.; Berg, G. Plant-driven selection of microbes. *Plant and Soil* 2014, 321, 235–257. [CrossRef]

Bashan, Y.; de-Bashan, L.E. Bacteria-plant relationships. *Springer-Verlag Microbiol. Ser.* 2005, 8, 89–115.

Ma, Y.; Oliveira, R.S.; Freitas, H.; Zhang, C. Biochemical mechanisms of plant-microbe-salt interactions. *Plant and Soil* 2019, 449, 1–22. [CrossRef]

Singh, J.S.; Gupta, V.K.; Kashyap, A.K. Desertification in India. *Environ. Conserv.* 2012, 39, 311–325. [CrossRef] López, M.J.; Vargas-García, M.C.; Suárez-Estrella, F.; Moreno, J. Compost microbial communities. *Springer Int. Microbiol. Ser.* 2016, 4, 205–218.

Zhang, J.; Wang, H.; He, M.; Chen, M.; Zhao, Z. Microbial interactions with saline soil. *J. Microbiol.* 2018, 56, 579–588. [CrossRef]

Friesen, M.L.; Porter, S.S.; Stark, S.C.; Von Wettberg, E.J.; Sachs, J.L.; Martinez-Romero, E. Microbial symbioses in agriculture: Diversity, benefits, and challenges. *Nat. Rev. Microbiol.* 2011, 9, 25–35. [CrossRef]

Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: London, UK, 2008; 800p.

Bever, J.D.; Platt, T.G.; Morton, E.R. Microbial dynamics in the rhizosphere. *Annu. Rev. Microbiol.* 2012, 66, 265–283. [CrossRef]

Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. *Proc. Natl. Acad. Sci. USA* 2013, 110, 3435–3440. [CrossRef]

Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Soliveres, S.; Escolar, C.; García-Palacios, P.; Berdugo, M. Aridity modulates N availability in arid ecosystems. *Ecology* 2013, 94, 1407–1419. [CrossRef]

Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. *Trends Plant Sci.* 2012, 17, 478–486. [CrossRef]

Schlaeppi, K.; Bulgarelli, D. The plant microbiome at work. *Mol. Plant-Microbe Interact.* 2015, 28, 212–217. [CrossRef]

Walters, W.A.; Jin, Z.; Youngblut, N.; Wallace, J.G.; Sutter, J.; Zhang, W.; Gonzalez-Pena, A.; Peiffer, J.;

Koren, O.; Shi, Q. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. *Proc. Natl. Acad. Sci. USA* 2018, 115, 7368–7373. [CrossRef] Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. *FEMS Microbiol. Rev.* 2013, 37, 634–663. [CrossRef]

Bragina, A.; Berg, C.; Berg, G. The core microbiome bonds the Alpine bog vegetation to a continuum of plant-microbe interactions. *Microb. Ecol.* 2015, 70, 428–440. [CrossRef]

Lugtenberg, B.J.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. *FEMS Microbiol. Ecol.* 2016, 92, 1–17. [CrossRef]

Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. *Trends Microbiol.* 2008, 16, 463–471. [CrossRef]

Kuzyakov, Y.; Razavi, B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. *Soil Biol. Biochem.* 2019, 135, 343–360. [CrossRef]

Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. *Nat. Rev. Microbiol.* 2013, 11, 789–799. [CrossRef]

Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. *Plant Physiol.* 2011, 156, 989–996. [CrossRef]

Verbon, E.H.; Liberman, L.M. Beneficial microbes: Plant development and interspecies communication. *Curr. Opin. Plant Biol.* 2016, 34, 45–49. [CrossRef]

Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. *Annu. Rev. Microbiol.* 2009, 63, 541–556. [CrossRef]

Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. *Proc. Natl. Acad. Sci. USA* 2006, 103, 626–631. [CrossRef]

Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. *Annu. Rev. Plant Biol.* 2013, 64, 807–838. [CrossRef]

Chen, M.; Zhang, W.; Wu, X.; Guo, X.; He, X. Soil microbial community and functional diversity in saline-alkali land. *Appl. Soil Ecol.* 2019, 135, 34–42. [CrossRef] Guo, Q.; Han, J.; Li, Q.; Chen, Y.; Wang, Y. Advances in phosphate solubilizing microorganisms for improving phosphorus availability in soil. *J. Integr. Agric.* 2020, 19, 367–378. [CrossRef]

Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. *Plant Soil* 2009, 321, 305–339. [CrossRef]

Mukherjee, A.; Singh, B.K.; Gour, J.P.; Adhya, T.K. Rhizosphere microbial community in saline soils. *Curr. Opin. Environ. Sustain.* 2019, 39, 24–30. [CrossRef] Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. *Front. Plant Sci.* 2017, 8, 1617. [CrossRef] Leff, J.W.; Lynch, R.C.; Kane, N.C.; Fierer, N. Plant domestication and the assembly of bacterial and fungal communities associated with crops. *New Phytol.* 2017, 214, 412–423. [CrossRef]

Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.; Bakker, P.A. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. *Science* 2011, 332, 1097–1100. [CrossRef] Bakker, P.A.; Pieterse, C.M.; de Jonge, R.; Berendsen, R.L. The soil-borne legacy. *Cell* 2018, 172, 1178–1180. [CrossRef]

Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. *Nucleic Acids Res.* 2014, 42, D633–D642. [CrossRef]

Santi, C.; Bogusz, D.; Franche, C. Biological nitrogen fixation in non-legume plants. *Ann. Bot.* 2013, 111, 743–767. [CrossRef]

Diagne, N.; Arumugam, K.; Ngom, M.; Dramé, K.N.; Djighaly, P.I.; Ndour, A.; Laplaze, L. Use of arbuscular mycorrhizal fungi in agriculture. *Front. Plant Sci.* 2020, 11, 1110. [CrossRef]

Yadav, R.; Singh, M.; Verma, J.P. Plant growth-promoting microbial consortia for sustainable agriculture. *Plant Soil Environ.* 2020, 66, 1–13. [CrossRef]

Peixoto, R.S.; Vermelho, A.B.; Rosado, A.S. Petroleum-degrading enzymes: Bioremediation and new prospects. *Enzyme Res.* 2011, 2011, 475193. [CrossRef] Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. *World J. Microbiol. Biotechnol.* 2012, 28, 1327–1350. [CrossRef]

Parnell, J.J.; Berka, R.; Young, H.A.; Sturino, J.M.; Kang, Y.; Barnhart, D.M.; DiLeo, M.V. From the lab to the farm: An industrial perspective of plant beneficial microorganisms. *Front. Plant Sci.* 2016, 7, 1110. [CrossRef]

Quiza, L.; St-Arnaud, M.; Yergeau, E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. *Front. Plant Sci.* 2015, 6, 507. [CrossRef]

Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. *Chem. Biol. Technol. Agric.* 2017, 4, 5. [CrossRef]

Rey, T.; Dumas, B. Plenty is no plague: Pathogen-associated molecular patterns (PAMPs) in plant

defense. *Trends Plant Sci.* 2017, 22, 904–916. [CrossRef]

Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role in plant health. *FEMS Microbiol. Ecol.* 2010, 34, 613–629. [CrossRef]

Newton, A.C.; Gravouil, C.; Fountaine, J.M. Managing the ecology of foliar pathogens: Ecological tolerance in crops. *Ann. Appl. Biol.* 2010, 157, 343–359. [CrossRef] Dastogeer, K.M.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant microbiome—an account of the factors that shape community composition and diversity. *Curr. Plant Biol.* 2020, 23, 100161. [CrossRef] Yu, K.; Pieterse, C.M.; Bakker, P.A.; Berendsen, R.L. Beneficial microbes going underground of root immunity. *Plant Cell Environ.* 2019, 42, 2860–2870. [CrossRef]

Panke-Buisse, K.; Poole, A.C.; Goodrich, J.K.; Ley, R.E.; Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. *ISME J.* 2015, 9, 980–989. [CrossRef]

Winston, M.E.; Hampton-Marcell, J.; Zarraonaindia, I.; Owens, S.M.; Moreau, C.S.; Gilbert, J.A.; Hartsel, J. Understanding microbial community dynamics to improve sustainable land management. *PLoS ONE* 2014, 9, e105509. [CrossRef]

Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. *Nat. Rev. Microbiol.* 2020, 18, 607–621. [CrossRef]

Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. *ISME J.* 2017, 11, 2639–2643. [CrossRef]

Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. The diversity and distribution of fungi on residential surfaces. *PLoS ONE* 2013, 8, e78866. [CrossRef]

Bulgarelli, D.; Garrido-Oter, R.; Munch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. *Cell Host Microbe* 2015, 17, 392–403. [CrossRef]

Oyserman, B.O.; Medema, M.H.; Raaijmakers, J.M. Roadmap to engineered bacterial plant microbiomes for sustainable agriculture. *Trends Microbiol.* 2018, 26, 952–963. [CrossRef]

Naylor, D.; DeGraaf, S.; Purdom, E.; Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. *ISME J.* 2017, 11, 2691–2704. [CrossRef]

Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A. Structure, variation, and assembly of the root-associated microbiomes of rice. *Proc. Natl. Acad. Sci. USA* 2015, 112, E911–E920. [CrossRef]

Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Brodie, E.L. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. *Nat. Microbiol.* 2018, 3, 470–480. [CrossRef] Fierer, N.; Breitbart, M.; Nulton, J.; Salamon, P.; Lozupone, C.; Jones, R.; Rohwer, F. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. *Appl. Environ. Microbiol.* 2007, 73, 7059–7066. [CrossRef]

Mendes, R.; Pizzirani-Kleiner, A.A.; Araujo, W.L.; Raaijmakers, J.M. Diversity of cultivated endophytic bacteria from sugarcane: Genetic and biochemical characterization of Burkholderia cepacia complex isolates. *Appl. Environ. Microbiol.* 2007, 73, 7259–7267. [CrossRef]

Vorholt, J.A. Microbial life in the phyllosphere. *Nat. Rev. Microbiol.* 2012, 10, 828–840. [CrossRef]

Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Ver Loren van Themaat, E.; Ahmadinejad, N.; Assenza, F.; Schulze-Lefert, P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. *Nature* 2012, 488, 91–95. [CrossRef]

Cheng, Z.; Park, E.; Glick, B.R. Role of plant growth-promoting rhizobacteria in sustainable agriculture and bioremediation. *Clim. Chang.* 2007, 45, 273–291. [CrossRef]

Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. *Mycol. Res.* 2002, 106, 996–1004. [CrossRef]

Koskella, B.; Hall, L.J.; Metcalf, C.J.E. The microbiome beyond the horizon of ecological and evolutionary theory. *Nat. Ecol. Evol.* 2017, 1, 1606–1615. [CrossRef] Shade, A.; Jacques, M.A.; Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. *Curr. Opin. Microbiol.* 2017, 37, 15–22. [CrossRef]

Tkacz, A.; Cheema, J.; Chandra, G.; Grant, A.; Poole, P.S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. *ISME J.* 2015, 9, 2349–2359. [CrossRef]

Hartman, K.; van der Heijden, M.G.A.; Roussely-Provent, V.; Walser, J.-C.; Schlaeppi, K. Deciphering composition and function of the root microbiome of a legume plant. *Microbiome* 2017, 5, 2. [CrossRef]

Martiny, J.B.; Bohannan, B.J.; Brown, J.H.; Colwell, R.K.; Fuhrman, J.A.; Green, J.L.; Staley, J.T. Microbial biogeography: Putting microorganisms on the map. *Nat. Rev. Microbiol.* 2006, 4, 102–112. [CrossRef]

Van Der Heijden, M.G.; Bruin, S.; de Meijer, F.A.; Fry, G.J. Arbuscular mycorrhizal fungi and Rhizobium bacteria synergistically enhance nitrogen and

phosphorus acquisition of legumes. *Plant Soil* 2003, 258, 151–159. [CrossRef]

Ramírez-Puebla, S.T.; Servín-Garcidueñas, L.E.; Jiménez-Marín, B.; Bolaños, L.M.; Rosenblueth, M.; Martínez-Romero, E. The phyllosphere: Microbial jungle at the plant–climate interface. *Front. Microbiol.* 2020, 10, 2154. [CrossRef]

Niu, B.; Paulson, J.N.; Zheng, X.; Kolter, R. Simplified and representative bacterial community of maize roots. *Proc. Natl. Acad. Sci. USA* 2017, 114, E2450–E2459. [CrossRef]

Hu, L.; Robert, C.A.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Rasmann, S. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. *Nat. Commun.* 2018, 9, 2738. [CrossRef]

Levy, A.; Salas-González, I.; Mittelviefhaus, M.; Clingenpeel, S.; Malfatti, S.; Tringe, S.G.; Dangl, J.L. Genomic features of bacterial adaptation to plants. *Nat. Genet.* 2018, 50, 138–150. [CrossRef]

Haichar, F.E.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. *Soil Biol. Biochem.* 2014, 77, 69–80. [CrossRef]

Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. *Plant Cell Environ*. 2009, 32, 666–681. [CrossRef]

Gopal, M.; Gupta, A.; Pal, R.K. Applications of plant growth-promoting microorganisms in the mitigation of abiotic stress in plants. *Front. Plant Sci.* 2020, 11, 2016. [CrossRef]

Zamioudis, C.; Pieterse, C.M.J. Modulation of host immunity by beneficial microbes. *Mol. Plant-Microbe Interact.* 2012, 25, 139–150. [CrossRef]

Mendes, R.; Raaijmakers, J.M. Impact of bacterial and fungal volatiles on plant health. *Trends Plant Sci.* 2015, 20, 206–211. [CrossRef]

Hacquard, S.; Garrido-Oter, R.; González, A.; Spaepen, S.; Ackermann, G.; Lebeis, S.L.; Schulze-Lefert, P. Microbial community composition and functional diversity in the phyllosphere and rhizosphere of Arabidopsis thaliana. *Nat. Commun.* 2015, 6, 4323. [CrossRef]

Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L.; Ley, R.E. Diversity and heritability of the maize rhizosphere microbiome under field conditions. *Proc. Natl. Acad. Sci. USA* 2013, 110, 6548–6553. [CrossRef]

Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. *New Phytol.* 2015, 206, 1196–1206. [CrossRef]

Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. *FEMS Microbiol. Ecol.* 2009, 68, 1–13. [CrossRef]

Deveau, A.; Bonito, G.; Uehling, J.; Paoletti, M.; Becker, M.; Bindschedler, S.; Martin, F. Bacterial-fungal interactions: Ecology, mechanisms, and challenges. *Fungal Biol. Rev.* 2018, 32, 62–77. [CrossRef]

Pérez-Jaramillo, J.E.; Carrión, V.J.; de Hollander, M.; Raaijmakers, J.M. The wild side of plant microbiomes. *Microbiome* 2018, 6, 143. [CrossRef]

Haichar, F.E.; Achouak, W.; Christen, R.; Heulin, T.; Marol, C.; Marais, M.F.; Berge, O. Stable isotope probing analysis of the diversity and activity of methanol-utilizing bacteria in the rhizosphere. *ISME J.* 2007, 1, 464–478. [CrossRef]

Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. *A Review. Biology and Fertility of Soils* 2015, 51, 403–415. [CrossRef]

Glick, B.R.; Penrose, D.M.; Li, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. *J. Theor. Biol.* 1998, 190, 63–68. [CrossRef]

Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. *Plant and Soil* 2003, 255, 571–586. [CrossRef]

Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. *Appl. Environ. Microbiol.* 2005, 71, 4951–4959. [CrossRef]

Lugtenberg, B.J.J.; Kamilova, F. Plant-growth-promoting rhizobacteria. *Annu. Rev. Microbiol.* 2009, 63, 541–556. [CrossRef]

Kumar, A.; Singh, R.; Yadav, A.; Giri, D.D.; Singh, P.K.; Pandey, K.D. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 2016, 6, 60. [CrossRef]

Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M.D.C.; Glick, B.R. Plant growth-promoting bacterial endophytes. *Microbiol. Res.* 2016, 183, 92–99. [CrossRef]

Redman, R.S.; Sheehan, K.B.; Stout, R.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance generated by plant/fungal symbiosis. *Science* 2002, 298, 1581. [CrossRef]

Zahir, Z.A.; Arshad, M.; Frankenberger, W.T. Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. *Adv. Agron.* 2004, 81, 97–168. [CrossRef]

Mishra, J.; Arora, N.K. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. *Appl. Soil Ecol.* 2018, 125, 35–45. [CrossRef]

Rajkumar, M.; Ae, N.; Freitas, H. Endophytic bacteria and their potential to enhance heavy metal

phytoextraction. *Chemosphere* 2009, 77, 153–160. [CrossRef]

Barea, J.M.; Pozo, M.J.; Azcón, R.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. *J. Exp. Bot.* 2005, 56, 1761–1778. [CrossRef]

Boller, T.; Felix, G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. *Annu. Rev. Plant Biol.* 2009, 60, 379–406. [CrossRef]

Dobbelaere, S.; Croonenborghs, A.; Thys, A.; Ptacek, D.; Vanderleyden, J.; Dutto, P.; Okon, Y. Responses of agronomically important crops to inoculation with Azospirillum. *A Review. Eur. J. Agron.* 2001, 15, 145–170. [CrossRef]

Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; van Wees, S.C.M.; Bakker, P.A.H.M. Induced systemic resistance by beneficial microbes. *Annu. Rev. Phytopathol.* 2014, 52, 347–375. [CrossRef]